

緒言

国内における電離放射線(以下,放射線)を利用する 施設の放射線管理方法は,国際放射線防護委員会 (International Commission on Radiological Protection: ICRP)の勧告に基づき,関係法令に取り入れられてい る.放射線は,医療のほか,食品,工業,土木業など, 実に多領域において有益なソースとして利用されてい るが,人体に対しては,線質ごとに一定量以上曝され ると有害である.医療の場であれば,術者が業務上受 ける被ばく(職業被ばく)と被検者やその家族・介助者 が受ける被ばく(医療被ばく)に分類され,それぞれの 被ばくによる利益が不利益を上回るよう放射線防護の 3 原則(行為の正当化,防護の最適化,線量限度)に基 づく安全管理がなされている.

医療被ばくには、一般撮影・透視撮影・X 線 computed tomography(CT)撮影や核医学診断といった診 断領域によるものと, radioisotope(RI)内用療法や放 射線外照射療法といった治療領域によるものに大別さ れる.治療領域では.標的部位へ生物学的に損傷を与 えることが目的であるため、診断領域に比べ照射線量 は圧倒的に大きい. 放射線療法は、体外照射であれば 三次元的な制御によって標的部位へ物理線量を照射す るが、標的の周辺臓器(リスク臓器)は時に炎症を起こ すなど有害事象を発生させる可能性を有する. また. 臓器親和性を利用した¹³¹I や²²³RaCl などによる RI 内 用療法においても、時に重大な副作用(嘔吐、骨髄抑制) や下痢など)が生じる.これら有害事象を事前に予測 する決定的ツールは存在しないため、発症時には状況 に応じて治療を休止あるいは中止し、回復を促す処置 を実施する.また、リアルタイムに細胞レベルの放射 線生物学的応答を確認する決定的な方法も未だ存在せ ず. 生体試料を利用したバイオマーカ基礎研究は世界 中の研究者が取り組んでいる状況にある. もし有害事 象の発生が予測できれば、患者個別に最適化された放 射線療法が実現できるだろう.

本稿では、生体試料を用いて放射線被ばくの程度を 推定するためのバイオマーカ、いわゆる放射線生物学 的線量評価(radiation biodosimetry)を紹介しつつ、筆 者らが現在取り組んでいる新たな放射線被ばく有害事 象バイオマーカ探索研究の一部を紹介する.

1. 放射線被ばくによる細胞の応答とバイオマーカ

基本的な放射線生物応答について確認する. 放射線 が(哺乳類)細胞に照射されると、その線質、線量率お よび線量に基づき、細胞内または近傍で物質との相互 作用(励起,電離)を起こし、細胞成分がそれらの影響 を受け、細胞が損傷する.しかし本来細胞が有する解 毒作用または修復作用が働き.損傷した細胞は正常な 細胞へ回復しようと努力するが,回復能力を超える損 傷を受けた細胞は排除される(アポトーシス誘導な ど). 放射線療法はこの細胞死誘導をがん細胞に応用 したものである、細胞はまた、恒常性を維持するため に、低分子から高分子に至る伝達物質を周辺細胞と交 換する細胞間コミュニケーションを行う特徴をもつ が、この機能の全容は未だ不明である^{1,2)}.筆者らは、 細胞が放射線に曝された際に、その細胞から放出され る伝達物質や代謝物質が乱れることを被ばくマウスモ デルの血中で確認しているが、この点についても多く が未解明のままである.もし細胞応答や特異物質の変 化に一定の規則性があれば、これらは biodosimetry というバイオマーカの一つとして意義が見出せる.

不慮の放射線被ばくを医療対応するための biodosimetry

放射線被ばくによる有害事象のほとんどは「急性放 射線障害」として知られ,前駆期・潜伏期・発症期・ 回復期に分類できる(Fig. 1)³⁾.急性放射線障害は,各 臓器・組織がもつ幹細胞が損傷し,枯渇あるいは分裂

Fig. 1 急性放射線障害発症までの各病期と biodosimetry の必要性(文献3より引用改変,日本原子力学会より許諾取得済)

Fig. 2 Andrews Lymphocyte Nomogram (a) および gold standard とされている DCA biodosimetry (b). (文献 4 および文献 5 より引用, with permission from IAEA)

ができなくなった場合,分化による組織への細胞供給 が抑制・停止することにより,そのターンオーバーに 依存して発症期へと移行するとされている.このた め,被ばく後に正常組織を防護するためには,その組 織幹細胞の回復が見込めるできるだけ早期の医療対応 が必要となり,その早期対応に biodosimetry が有用 なツールとされる.

細胞遺伝学的 biodosimetry 技術は 1960 年代中盤頃 から始まったとされ、血球減少を指標とする "Andrews Lymphocyte Nomogram"という線量に応 じてリンパ球減少割合が時間軸で異なることを利用し た方法があった(Fig. 2a)⁴⁾. その後、細胞遺伝学的な biodosimetry は研究が積み重ねられ、末梢血リンパ球 を用いた premature chromosome condensation (PCC), dicentric chromosome assay(DCA), fluorescent in situ hybridization (FISH), cytokinesis-block micronucleus(CBMN)などの評価技術が国際標準化の マニュアルとされ現在に至る(Table)^{5,6)}. とりわけ DCA は高精度な線量評価が可能なうえ,広い線量レ ンジを有する gold standard として認知されている (Fig. 2b)⁷⁾. このほか DNA 損傷頻度や末梢血血漿/血 清に含まれる成分,爪や歯を用いた電子常磁性共鳴法 (EPR)も研究段階にあり,さまざまな角度からの biodosimetry が検証されている^{8~11)}.

物理線量評価と異なる biodosimetry の特徴の一つ は、個人ごとの放射線感受性を含めた直接評価だとい うことであり、重要な線量評価ツールといえる.また 国際原子力機関(IAEA)は biodosimetry について、物 理評価による個人線量計と並び、原子力災害や放射線 事故といった不慮の被ばく事象に対し、急性放射線障 害に対する医療トリアージとして積極的に利用するよ う推奨している¹²⁾.

Biodosimetry の課題と新たなバイオマーカの 探索

Biodosimetry の国際標準化マニュアルは,前セク

Table 線量評価のための細胞遺伝学的変異アッセイの比較

	細胞遺伝学的変異アッセイ			
	PCC	DCA	FISH	CBMN
Biodosimetry の対象となる変異	 ・染色体断片の過 剰;二動原体染色 体と環状染色体 ・転座 	 ・二動原体染色体 (および環状染色体) 	 ・二動原体染色体 (および環状染色体) ・転座 	・微小核陽性細胞 ・核質間ブリッジ
放射線被ばくの対象となるシナリオ	・直後~数日	・直後~数日	・直後~だいぶ経 過した被ばく	・直後~数日
光子線による全身への急性被ばく線 量でのレンジ(Gy)	0.2–20	0.1–5	0.25-4	0.3-4
局所被ばくでの有用性	\bigcirc	\bigcirc	×	×
トリアージとしての線量評価	0	\bigcirc	×	\bigcirc

ションで紹介した高精度な定量が可能な DCA を中心 に進められているものの,これらの手法には末梢血リ ンパ球の培養が必要なうえ,その培養期間と解析には 数日の時間を要するため,迅速性に課題がある.その ため新たなバイオマーカの探索が必要とされる (Fig. 1).また,放射線療法分野において,正確に物理線量 を付与しても,リスク臓器における有害事象が強く発 現する患者もいれば,ほとんどみられない場合もあ る.このような迅速性と生物学的な応答性の両方を備 えるバイオマーカがあれば,医療トリアージにも利用 可能であり,更には放射線療法の最適化に応用可能と 考える.こうした夢のバイオマーカを見つけるため, 筆者らは尿中および血液中に含まれる成分を対象とし た基礎研究にて可能性を見出したので紹介する.

3-1 尿中に含まれる放射線被ばくマーカ

尿は、老廃物を体外に排泄する、あるいは体内浸透 圧を調節する働きをもつ腎臓から産生される物質で. 腎糸球体でろ過され体内の代謝物を多分に含む. その 中でも比較的安定性が高く、細胞の核酸の酸化損傷を 指標とする 8-hydroxy-2'-deoxyguanosine (8-OHdG)に 着目した¹³⁾. この 8-OHdG は DNA 中のグアニン塩基 が酸化損傷を受け、8位の炭素が酸化されることで産 生される. 毒性を有する 8-OHdG は、体内では速やか に血中から尿中へと排泄される. これまでにさまざま な酸化ストレスに対するマーカとして知られていたも のの、急性放射線障害発症レベルとの関連性について の詳細は未だ報告が少なかった。筆者らは個体マウス (C57BL/6N, 8週齡, 雄)を用いて高線量率被ばく後 の尿中測定を実施したところ(1 Gy/min, X 線, 150 kV, 20 mA, 0.5 mmAl+0.3 mmCu), 線量の増大とと もに強い骨髄抑制が観察され(Fig. 3a), 尿中 8-OHdG はマウス致死線量である7Gy以上にて有意な濃度上 昇がみられることが明らかとなった(Fig. 3b, クレア チニン量により濃度補正を実施した). またその尿中 応答は 72 時間以内にて検出可能であった.

またこのほかの尿中バイオマーカとして,組織細胞 内への酸化ストレスを受けた際にタンパクおよび核酸 代謝にて誘導される脂質酸化代謝物である malondialdehyde (MDA) についても検証したので紹介する¹⁴⁾. MDA は個体生物が摂取した多価不飽和脂肪酸 (polyunsaturated fatty acid: PUFA)を由来としており,生 体内における酸化的代謝の影響を受け,尿中に排泄さ れると考えられている.同様に高線量率被ばくマウス モデルを用いて検証したところ,尿中 MDA は致死線 量被ばくにて 48 時間以内で有意な濃度上昇が確認さ れた(Fig. 4).

以上の2種類の代謝成分はいずれも技術的に最短3時間以内の測定が可能であり,致死線量被ばくの判定 には有用であると考える.

3-2 血液中に含まれる放射線被ばくバイオマーカ

血液中に含まれる RNA 成分のうち, micro RNA (miRNA)について, 近年放射線応答性があることを 示唆する報告が散見されている. 筆者らは放射線被ば くマウスモデルを用いて被ばくマーカの可能性を探索 したところ, 血清中に放射線に複数応答する miRNA を発見した. そのうち膵臓や腸管などで高発現する miR-375-3p が特に致死線量を被ばくした際血清に高 濃度で検出されることがわかった^{15,16)} (Fig. 5). 更に その miRNA は血清中に含まれる細胞外小胞において も検出されることを確認した.

3-3 大腸がん治療を目的とした被ばくバイオマーカ

筆者らはがん細胞においても同様に放射線に応答す るバイオマーカが存在しないかを確認する実験を大腸

Fig. 3 Validation of radiation induced bone marrow failure under radiation exposure and response of 8-OHdG conc. in mice model.

In 72 h after exposed X-irradiation, bone marrow cells from both femurs and urine were collected, and quantified a number of cells (a) and concentration of urinal 8-OHdG (b). #P<0.05 vs. unexposed cells, and *P<0.05 vs. unexposed urine by Mann-Whitney U-test. (referenced by No.13. 日本サイトメトリー学会より許諾取得済)

Fig. 4 Radiation response of urinal MDA production. Data are presented as the mean±standard error of the mean of 3-5 urine samples. *P<0.05 vs. unexposed urine of day 1, #P<0.05 vs. unexposed urine of day 2. (referenced by No.14. 日本臨床検査医学会より許諾 取得済)

がん細胞株 HCT-116 細胞にて検証した. この実験で は、細胞外に放出される miRNA に注目したところ、 X 線 2 Gy 照射後において miR-3605-5p, miR-516a-5p, miR-765 の 3 因子が非照射条件に比べ 2 倍以上発現上 昇した^{17,18} (Fig. 6). 更に最も変動の大きかった miR-765 は、大腸がんに対する術前化学放射線併用療法に おける状態翼マーカとしての報告があり、とりわけ放 射線に応答性がある因子の一つとして、今後更なる検 証に期待が高まる.

4. 今後の放射線診療および被ばく医療への課題と期 待

483

b

放射線被ばくに対する biodosimetry 技術は,まだ まだ発展の可能性を秘めており,筆者らもまた,日々 研究活動に取り組み,新たな知見を得る度にその科学 的根拠の追跡に取り組むことを繰り返している.放射 線被ばく事象から生体内の代謝産物が血清や尿中にお いて検出されるまでにさまざまな修飾を受けるため, その実態の全容を把握することは容易ではなく,更な る基礎研究を進めることが必要である.筆者らの取り

Fig. 5 miR-375-3p expression in serum of mice exposed to 7 Gy X-irradition. The expression in whole serum (a) and in extracellular vesicles derived from serum (b) of mice was measured by RT-qPCR (each n=5-7). The expression of miR-375-3p of 18 organs/tissues was also quantitated (c). Statistical significance was examined by Student's t-test (*P≤0.05, **P≤0.01 vs 0 Gy). (referenced by No.14-15. 日本臨床検査医学会より許諾取得済)

 Fig. 6 Quantitative analysis of miR-3605-5p, miR-516a-5p and miR-765 expression in the HCT116 cell culture supernatant.
 Each miRNAs were collected after 72 h exposed to 2 Gy X-irradiation, and

Each miRNAs were conected after 72 h exposed to 2 Gy X-irradiation, and quantified by miRNA microarray system (SureScan, Agilent Technologies). Data are presented as the mean \pm standard error of the mean of 3 separate experiments. **P*<0.05 and ***P*<0.01 vs. unexposed cell by Student's t-test.

b

С

Fig. 7 Schematic diagram of microenvironment in cancer tissue under radiotherapy.

参考文献

- EL Andaloussi S, Mäger I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 2013; 12(5): 347-357.
- Bloemendal S, Kück U. Cell-to-cell communication in plants, animals, and fungi: a comparative review. Naturwissenschaften 2013; 100(1): 3-19.
- 3) 明石真言,石榑信人.高線量被ばく作業員に対する緊急 時対応とその被ばく線量評価(特集:ウラン燃料加工施設 における臨界事故).日本原子力学会誌 2000; 42(8): 720-725.
- International Atomic Energy Agency, VIENNA, 1965. Personnel Dosimetry for Radiation Accidents.
- 5) EPR-Biodosimetry 2011. International Atomic Energy Agency (IAEA): (http://www-pub.iaea.org/MTCD/publications/PDF/ EPR-Biodosimetry%202011_web.pdf) (2019 年 3 月 13 日ア クセス), 2011
- 6) Rojas-Palma C, Liland A, Jerstad A, et al. (Eds.) TMT handbook: Triage, Monitoring and Treatment of people exposed to ionising radiation following a malevolent act. Norwegian Radiation Protection Authority, 2009.
- 7) Jaworska A, Ainsbury EA, Fattibene P, et al. Operational guidance for radiation emergency response organisations in Europe for using biodosimetric tools developed in EU MULTIBIODOSE project. Radiat Prot Dosimetry 2015; 164(1-2): 165-169.
- Simon SL, Bouville A, Kleinerman R. Current use and future needs of biodosimetry in studies of long-term health risk following radiation exposure. Health Phys 2010; 98(2): 109-117.

 Marciniak A, Ciesielski B, Prawdzik-Dampc A. The effect of dose and water treatment on EPR signals in irradiated fingernails. Radiat Prot Dosimetry 2014 Nov; 162(1-2): 6-9.

組む研究活動で明確にいえることは,正常組織と腫瘍

細胞の双方で放射線応答因子は存在し、その応答には

一定の規則性があるということである. 緊急時放射線 被ばく分野のほか, 医用放射線分野における被ばくバ イオマーカの技術発展のため(Fig.7), 是非この分野

に興味・関心が集まり、多くの研究者に取り組んでい

ただければと思う.

- Schreiber W, Petryakov SV, Kmiec MM, et al. FLEXIBLE, WIRELESS, INDUCTIVELY COUPLED SURFACE COIL RESONATOR FOR EPR TOOTH DOSIMETRY. Radiat Prot Dosimetry 2016; 172(1-3): 87-95.
- Sholom S, McKeever SW. Emergency EPR dosimetry technique using vacuum-stored dry nails. Radiat Meas 2016; 88: 41-47.
- Turai I. The IAEA's co-ordinated research project on biodosimetry, 1998-2000. Appl Rad Isot 2000; 52: 1113-1116.
- 13) Monzen S, Terada K, Morino Y, et al. Urinal biomarker, 8-Hydroxy-2'-Deoxyguanosine, for unexpected exposure dose of ionizing radiation. Cytometry Research 2018; 28(1): 41-45.
- 14) Monzen S, Chiba M, Mariya Y. Malondialdehyde: a urinary toxic biomarker for unexpected exposure to high-dose ionizing radiation. 臨病理 2019; 67(3).
- 15) Chiba M, Monzen S, Iwaya C, et al. Serum miR-375-3p increase in mice exposed to a high dose of ionizing radiation. Sci Rep 2018; 8(1): 1302.
- Chiba M, Monzen S. Search of radiation-responsive miRNA using blood specimens, Cytometry Research 2018; 28(1): 1-6.
- Ueno T, Monzen S, Chiba M, et al. Basic investigation to optimize radiation dose using biological evaluation in radiotherapy, Cytometry Research 2018; 28(1): 7-11.
- 18) Ueno T, Monzen S, Chiba M, et al. [Screening for Biological Marker of Dose-optimization in Cancer Radiotherapy]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2018; 74(5): 459-464.